Weakly Hyperbolic Equations with Time Degeneracy in Sobolev Spaces
نویسنده
چکیده
The theory of nonlinear weakly hyperbolic equations was developed during the last decade in an astonishing way. Today we have a good overview about assumptions which guarantee local well posedness in spaces of smooth functions (C∞, Gevrey). But the situation is completely unclear in the case of Sobolev spaces. Examples from the linear theory show that in opposite to the strictly hyperbolic case we have in general no solutions valued in Sobolev spaces. If so-called Levi conditions are satisfied, then the situation will be better. Using sharp Levi conditions of C∞-type leads to an interesting effect. The linear weakly hyperbolic Cauchy problem has a Sobolev solution if the data are sufficiently smooth. The loss of derivatives will be determined in essential by special lower order terms. In the present paper we show that it is even possible to prove the existence of Sobolev solutions in the quasilinear case although one has the finite loss of derivatives for the linear case. Some of the tools are a reduction process to problems with special asymptotical behaviour, a Gronwall type lemma for differential inequalities with a singular coefficient, energy estimates and a fixed point argument.
منابع مشابه
On the amplitude equations for weakly nonlinear surface waves
Nonlocal generalizations of Burgers’ equation were derived in earlier work by Hunter [Contemp. Math. 1989], and more recently by Benzoni-Gavage and Rosini [Comput. Math. Appl. 2009], as weakly nonlinear amplitude equations for hyperbolic boundary value problems admitting linear surface waves. The local-in-time well-posedness of such equations in Sobolev spaces was proved by Benzoni-Gavage [Diff...
متن کاملGlobal attractor for a nonlocal hyperbolic problem on ${mathcal{R}}^{N}$
We consider the quasilinear Kirchhoff's problem$$ u_{tt}-phi (x)||nabla u(t)||^{2}Delta u+f(u)=0 ,;; x in {mathcal{R}}^{N}, ;; t geq 0,$$with the initial conditions $ u(x,0) = u_0 (x)$ and $u_t(x,0) = u_1 (x)$, in the case where $N geq 3, ; f(u)=|u|^{a}u$ and $(phi (x))^{-1} in L^{N/2}({mathcal{R}}^{N})cap L^{infty}({mathcal{R}}^{N} )$ is a positive function. The purpose of our work is to ...
متن کاملOn the Regularity of Averages over Spheres for Kinetic Transport Equations in Hyperbolic Sobolev Spaces
We study the smoothing effect of averaging over spheres for solutions of kinetic transport equations in hyperbolic Sobolev spaces.
متن کاملWell-posedness in Smooth Function Spaces for the Moving-boundary 1-d Compressible Euler Equations in Physical Vacuum
The free-boundary compressible 1-D Euler equations with moving physical vacuum boundary are a system of hyperbolic conservation laws which are both characteristic and degenerate. The physical vacuum singularity (or rate-of-degeneracy) requires the sound speed c = γργ−1 to scale as the square-root of the distance to the vacuum boundary, and has attracted a great deal of attention in recent years...
متن کاملWell-Posedness in Smooth Function Spaces for Moving-Boundary 1-D Compressible Euler Equations in Physical Vacuum
The free-boundary compressible one-dimensional Euler equations with moving physical vacuum boundary are a system of hyperbolic conservation laws that are both characteristic and degenerate. The physical vacuum singularity (or rate of degeneracy) requires the sound speed c2 D 1 to scale as the square root of the distance to the vacuum boundary and has attracted a great deal of attention in recen...
متن کامل